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2-D/Axisymmetric Formulation of
Multi-dimensional Upwind Scheme

William A. Wood
�
and William L. Kleb

�

NASA Langley Research Center, Hampton, VA 23681

A multi-dimensional upwind discretization of the two-dimensional/axisymmetric
Navier-Stokes equations is detailed for unstructured meshes. The algorithm is an ex-
tension of the 
uctuation splitting scheme of Sidilkover. Boundary conditions are im-
plemented weakly so that all nodes are updated using the base scheme, and eigen-value
limiting is incorporated to suppress expansion shocks. Test cases for Mach numbers rang-
ing from 0.1{17 are considered, with results compared against an unstructured upwind
�nite volume scheme. The 
uctuation splitting inviscid distribution requires fewer op-
erations than the �nite volume routine, and is seen to produce less arti�cial dissipation,
leading to generally improved solution accuracy.

Nomenclature

A Flux Jacobian
A Auxiliary variables 
ux Jacobian
B Axisymmetric source term
Cf Skin friction coeÆcient
Cp Pressure coeÆcient
D Linearity preserving matrix
E Total energy
F Flux function
H Total Enthalpy
M Upwinding matrix
P Pressure
Q Limiter ratio
R Gas constant
Re Reynolds' number
S Area
T Temperature
U Conserved variables
V Primitive variables
V Projected velocity
W Auxiliary variables
X Eigen-vectors
X Auxiliary variables eigen-vectors
Z Parameter vector
a Sound speed
cp Speci�c heat
e Internal energy
` Length
n; t Normal/tangential vectors
q Heat-transfer rate
r Position vector
t Time

�Aerospace Engineer, Aerothermodynamics Branch, Aerody-
namics, Aerothermodynamics, & Acoustics Competency.

Copyright c
 2001 by the American Institute of Aeronautics and
Astronautics, Inc. No copyright is asserted in the United States
under Title 17, U.S. Code. The U.S. Government has a royalty-
free license to exercise all rights under the copyright claimed herein
for Governmental Purposes. All other rights are reserved by the
copyright owner.

u; v Velocity components
x; y Cartesian coordinates
� Generalized integration surface
� Eigen-values

 Generalized integration volume
� Finite volume arti�cial dissipation
�; � Curvilinear advection speeds
Æ Incremental amount

 Ratio of speci�c heats
� Thermal conductivity
� CoeÆcient of viscosity
� Fluctuation
 Limiter function
� Density
� Shear stress
� Finite element shape function
$ Axisymmetric switch
�; � Curvilinear coordinates

Superscripts:

i Inviscid
v Viscous
T Transpose
x;y;�;� Spatial component of a vector
� Second-order 
uctuation
0 Fluctuation splitting arti�cial dissipation

Subscripts:

0 Current node

1 Freestream

o Stagnation value

w Wall

R;L Right/left

T Triangle

i;j;k Indicies
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Notation:

AOA Angle of attack
COE Contributions from other elements
LHS Left-hand side
RHS Right-hand side
r Gradient
� Backward di�erence
� Permutation operator

Bold indicates vectors of the system of equations.
The vector symbol, ~, indicates spatial vectors. Tilde
quantities are Roe-averaged, while the overbar is for
linearly averaged quantities. Hats denote unit vectors.
The breve symbol, �, indicates quantities in auxiliary
variables. Subscripts of other variables indicate di�er-
entiation.

Introduction

U
PWIND 
uctuation splitting and �nite volume
discretization schemes are detailed for the two-

dimensional and axisymmetric equations of motion for
a perfect gas on triangulated domains. Both the �nite
volume and 
uctuation splitting upwind schemes are
applied to the inviscid 
ux, while the viscous 
ux is
discretized with a scheme analogous to �nite element.

Veri�cation and validation of the schemes is per-
formed using the test cases and methodology of Shing-
hal1 and Roache,2 with examples ranging from the
incompressible 
at plate to a Mach-17 cylinder.

New contributions include the axisymmetric for-
mulation of the upwind 
uctuation splitting distribu-
tion, the proper form for eigen-value limiting for this
scheme, the head-to-head comparison of �nite volume
and 
uctuation splitting, and the application of 
uctu-
ation splitting to a hypersonic heat-transfer validation
test.

Formulations

The Navier3-Stokes4 system of equations can be
written in two-dimensional or axisymmetric non-
dimensional form as,

$aUt + ~r�($a
~Fi) = ~r�($a

~Fv) +$Bi �$Bv (1)

where $ is a logical switch between two-dimensional
($ = 0) and axisymmetric ($ = 1) equations and,

$a = 1�$ +$y (2)

is 1 for two dimensions and y for axisymmetric.

The conserved state vector is,

U = (�; �u; �v; �E) T (3)

The inviscid and viscous 
uxes are,

~Fi =

0BBBB@
�~V

�u~V + (1; 0)P

�v~V + (0; 1)P

�~V H

1CCCCA (4)

~Fv =
1

Re1

0B@ 0

�

�~rT + ~V �

1CA (5)

with the shear-stress tensor de�ned,

� = �

�
~rT~V +

�
~rT~V

�
T � 2

3
~r�~V I

�
(6)

The inviscid and viscous axisymmetric source terms
each have only one non-zero term,

Bi
3 = P; Bv

3 =
2�

3Re1

�
2
v

y
� ~r�~V

�
(7)

The governing equations are discretized using two
di�erent, second-order node-based schemes for un-
structured (triangulated) meshes. The popular
Barth5, 6 �nite volume scheme is chosen as the baseline
for comparison. The other scheme is the multi-dimen-
sional-upwind 
uctuation splitting discretization due
to Sidilkover,7{9 extended here to include eigen-value
limiting, axisymmetric terms, and both thin-layer and
full Navier-Stokes viscous terms.

State Vector

In the �nite volume context, integration of the de-
pendent variables over the control volume about node i
is performed as,Z


i

$aUt d
 = $aSiUit (8)

For two-dimensional $a = 1, while for axisymmetric
$a can be either taken as $a = yi, for mass-lumping
to the node, or as the y-value of the centroid of 
i.
In the 
uctuation splitting context, the parameter

vector is taken to vary linearly over each element. For
a perfect gas, changes to the conserved variables can
be related to changes in the parameter vector as,

dU = UZ dZ (9)

UZ =

266664
2Z1 0 0 0

Z2 Z1 0 0

Z3 0 Z1 0
1


Z4


�1


Z2


�1


Z3

1


Z1

377775 (10)

Integration of $aUt over an element leads to a mass
matrix, Z




$aUt d
 =

Z



$aUZZt d
 (11)
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If mass-lumping to the nodes is employed, introduc-
ing temporal, but not spatial, errors, Eqn. 11 can be
partitioned among the three nodes de�ning 
 as,Z




$aUt d
 =
ST

3

3X
i=1

$aiUit (12)

so that the sum of all contributions to node i equals
$aiSiUit .

Axisymmetric Sources

In the �nite volume framework, the inviscid axisym-
metric source term, Bi, is simply evaluated at the node
as, Z


j

B
i d
 = SjB

i
j (13)

While some authors insist on upwinding source
terms for 
uctuation splitting,8, 10 the present analysis
considers an upwind distribution to be inappropriate
for the axisymmetric source terms, which arise from
purely geometric manipulations. The axisymmetric
source term can be distributed to the node in the 
uc-
tuation splitting framework following a mass-lumped
analogy as,

$ajSjUjt  $SjB
i
j (14)

which is equivalent to the �nite volume treatment of
Eqn. 13. A modi�cation of this distribution is to send
contributions weighted by the averaged values,

$ajSjUjt  $
ST

3
~Bi
T + COE (15)

A more rigorous treatment integrates the source
term analytically, based on a linear variation of the
parameter vector. The only non-zero inviscid source
term is,

Bi
3 = P =


 � 1




�
Z1Z4 � Z2

2 + Z2
3

2

�
(16)

The integration over the triangular element is divided
into thirds along the median-dual boundaries, as in
Figure 1, so that,


 = 
1 +
2 +
3 (17)

The subintegrals are then distributed to the nearest
node. Notice that the subdivided integration elements,

1�3, are quadrilaterals, whereas the original element
was a triangle. The distribution formula is thus,

$ajSjUjt  $

Z

j

B
i d
j + COE (18)

The integration of the source term over 
j is expanded
in detail in Ref. 11.


1 
2


3

1 2

3

Fig. 1 Subdivision of triangular element into three
quadrilateral integration areas. Dashed lines are
the median-dual mesh.

The viscous axisymmetric source can be integrated
using the Haselbacher12 thin-layer approach (detailed
in the following viscous 
ux section) as,Z


i

Bv
3 d
 =

4

3Re1

Z

i

�v

y
d
� 2

3Re1

I
�i

�~V �n̂ d�
(19)

Mass lumping to the node for the �rst term yields,Z

i

�v

y
d
 = �iSi

vi

yi
(20)

while the second term is evaluated at edge midpoints.

Inviscid Flux

The �nite volume discretization of the inviscid 
ux
is performed as an average of the 
uxes to the left and
right of the control volume face, times the parameter
$a (equal to 1 for two-dimensional or the y-value of
the quadrature point on the face for axisymmetric)
plus the arti�cial dissipation, which is de�ned as,

� =
1

2
j ~~A�n̂j(UR �UL) (21)

where by convention the right state is to the outside of
the control volume while the left state is to the inside.
The parameter vector, Z =

p
� [1; u; v; H ]T , is

linearly averaged, �Z = 1
2 (ZL + ZR), to provide the

quantities,

~u =
�Z2
�Z1
; ~v =

�Z3
�Z1
; ~H =

�Z4
�Z1

(22)

and the Roe-density is, ~� =
p
�L�R.

The projected 
ux Jacobian is decomposed as,

j ~~A�n̂j = ~Xj~�j~X�1 (23)

with,

� = diag (V ; V ; V + a; V � a) (24)

X =

266664
1 0 1 1

u �ny u+ anx u� anx
v nx v + any v � any
V 2

2 vnx � uny H + aV H � aV

377775 (25)
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The product ~X�1(UR �UL) is expressed,

~X�1dU =
1

2~a2

0BBBB@
2~a2d�� 2dP

2~a2(nxdv � nydu)
dP + ~�~adV
dP � ~�~adV

1CCCCA (26)

where the projected velocity is V = ~V �n̂ and the aver-
aged speed of sound for a perfect gas is,

~a2 = (
 � 1)

�
~H � ~u2 + ~v2

2

�
(27)

Integration of the inviscid 
ux for 
uctuation split-
ting is performed as,Z




~r�
�
$a

~Fi
�
d
 =

Z



$a
~r�~Fi d
 +$

Z



F
iy d


(28)

The y-component of the 
ux function can be written
in terms of the parameter vector as,

F
iy =

266664
Z1Z3

Z2Z3

Z2
3 +


�1



�
Z1Z4 � Z2

2
+Z2

3

2

�
Z3Z4

377775 (29)

A linear variation of the parameter vector over a tri-
angular element can be represented as,

(30)
Z(x; y) =

1

2ST
�ijkZj

� [(x�xi)(yk � yi) + (y� yi)(xi � xk)]
where �ijk is the cyclic-permutation summation oper-
ator. The linear variation can also be written in the
element-local (�; �) coordinates, referring to Figure 2,
as,

(31)
Z(�; �) = Z1 +

1

`3
(Z2 � Z1)� + 1

`1
(Z3 � Z2)�

= Z1 +
1

`3
��Z � +

1

`1
��Z �

The domain is on 0 � � � `1
`3
� and 0 � � � `3. The

cartesian coordinates map similarly,

x(�; �) = x1 +
1

`3
��x � +

1

`1
��x � (32)

y(�; �) = y1 +
1

`3
��y � +

1

`1
��y � (33)

Some general integration rules can be developed for
linear variations over the triangular elements:Z




d
 = ST (34)Z



x d
 = ST�x (35)

Z



xy d
 = ST�x�y � ST

4

0@�x�y � 1

3

3X
j=1

xjyj

1A (36)

1

2

3

`1

`2
`3

��

n̂1

n̂2

n̂3

Fig. 2 Elemental triangular domain for 
uctuation
splitting.

The cell-averaged value is,

�x =
x1 + x2 + x3

3
=

1

3

3X
j=1

xj (37)

The last term of Eqn. 28 is distributed to the nodes
in a manner similar to the source term,

$aiSiUit  �$
Z

i

F
iy d
i + COE (38)

This integral can be evaluated exactly as,

Z

i

Z1Z3 d
i =
ST

144

2414 �Z1 �Z3 + 11(Z1i �Z3 + �Z1Z3i)

+ 9Z1iZ3i +

3X
j=1

Z1jZ3j

35 (39)

for the continuity equation. The integrals for the other
governing equations follow directly from Eqn. 39.
The remaining term to evaluate in Eqn. 28 is the

inviscid 
uctuation,

(40)

� = �
Z



$a
~r�~Fi d


= �`1`3
2ST

Z



$a

�
n̂1 �~Fi� � n̂3 �~Fi�

�
d


= � 1

2ST

Z



$a

�
`1n̂1 �~FZ��Z� `3n̂3 �~FZ��Z

�
d


where d~Fi = ~FZ dZ and,

~Fx
Z =

266664
Z2 Z1 0 0


�1


Z4


+1


Z2 �
�1



Z3


�1


Z1

0 Z3 Z2 0

0 Z4 0 Z2

377775 (41)

~F
y
Z =

266664
Z3 0 Z1 0

0 Z3 Z2 0

�1


Z4 �
�1



Z2


+1


Z3


�1


Z1

0 0 Z4 Z3

377775 (42)
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The integration rule Eqn. 36 allows for the direct eval-
uation of Eqn. 40 as,

�=�1
2
$a`1n̂1�

24~FZ� 1

4

0@~FZ� 1

3

3X
j=1

$aj

$a

~FZj

1A35��Z

+
1

2
$a`3n̂3

�
24~FZ � 1

4

0@~FZ � 1

3

3X
j=1

$aj

$a

~FZj

1A35��Z

(43)

Noting that
~~A = ~FZ Z~U and,

ZU =
1

2
p
�

266664
1 0 0 0

�u 2 0 0

�v 0 2 0

�H+(
�1)
�
u2+v2

�
�2(
�1)u �2(
�1)v 2


377775
(44)

with the tilde-averaged quantities de�ned as,

~U = U(�Z); g��U = U �Z ��Z; g��U = U �Z ��Z (45)

leads to the 
uctuation expressed as,

� = �1
2
$a`1n̂1 �

24 ~~A� 1
4

0@~~A� 1
3

3X
j=1

$aj

$a

~Aj

1A35 g��U

+
1

2
$a`3n̂3�

24 ~~A� 1
4

0@~~A� 1
3

3X
j=1

$aj

$a

~Aj

1A35 g��U

= �� + �� (46)

Equation 46 includes the approximation,

~Aj ' ~FZj
Z ~U (47)

A transformation of variables can be made to the
auxiliary variables so that,

� = ~UW
�� (48)

with,

UW =

266664
1 0 0 1

a2

u 1 0 1
a2
u

v 0 1 1
a2
v

V 2

2 u v 1

�1

T0
T

377775 (49)

Similarity transformations lead to,

�� =�1
2
$a`1n̂1�

24 ~~A� 1

4

0@~~A� 1

3

3X
j=1

$aj

$a

~Aj

1A35 g��W

+
1

2
$a`3n̂3�

24 ~~A� 1

4

0@~~A� 1

3

3X
j=1

$aj

$a

~Aj

1A35 g��W

= �$a

�
� g��W + � g��W

�
= ��

�
+ ��

�
(50)

with ~A =WU
~AUW and,g��W =W ~U

g��U =W �Z ��Z (51)g��W =W ~U
g��U =W �Z ��Z (52)

where,

WU =

266664
2� T0

T
u
h

v
h

� 1
h

�u 1 0 0

�v 0 1 0

�1
2 V 2 �(
 � 1)u �(
 � 1)v 
 � 1

377775
(53)

WZ =
p
�

266664
2� H


h
u

h

v

h

� 1

h

�u 1 0 0

�v 0 1 0

�1


H �
�1



u �
�1



v 
�1




377775

=

266664
2Z1 � 
�1


a2
Z4


�1

a2

Z2

�1

a2

Z3 �
�1

a2

Z1

�Z2 Z1 0 0

�Z3 0 Z1 0

�1


Z4 �
�1



Z2 �
�1



Z3


�1


Z1

377775
(54)

using the relation,

h = cpT =
a2


 � 1
(55)

The projection of ~A has the simple form,

n̂� ~A =

266664
V 0 0 0

0 V 0 nx

0 0 V ny

0 a2nx a2ny V

377775 (56)

where the projected velocity is V = n̂� ~V . The gener-
alized advection speeds are,

� =
`1

2
n̂1 �
24~~A� 1

4

0@~~A� 1

3

3X
j=1

$aj

$a

~Aj

1A35 (57)

� = �`3
2
n̂3 �
24 ~~A� 1

4

0@~~A� 1

3

3X
j=1

$aj

$a

~Aj

1A35 (58)
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where the approximation ~Aj = W ~U
~Aj

~UW has been
incorporated.
Linearity preservation for second-order spatial ac-

curacy is obtained by limiting the 
uctuations compo-
nentwise,

���
�

j = ���j +
���j  (Qj) = ���j

�
1�  

�
1

Qj

��
(59)

���
�

j = ���j � ���j  (Qj) = ���j (1�  (Qj)) (60)

where the second equalities hold for symmetric lim-
iters. The limiting ratio is,

Qj = �
���j
���j

(61)

In vector form, Eqns. 59 and 60 can be written,

��
��

= D� ��
�

(62)

��
��

= D� ��
�

(63)

with

D
� = diag

�
1�  

�
1

Qj

��
(64)

D
� = diag (1�  (Qj)) (65)

Upwinding is achieved through the introduction of
arti�cial dissipation

��
0�

= sign(�)��
��

= �$aM�D
�
M

�1
� j�j g��W (66)

��
0�

= sign(�)��
��

= �$aM�D
�
M

�1
� j�j g��W (67)

where M� = sign(�) and M� = sign(�). The ab-
solute values of the generalized advection speeds are
developed using the following decomposition, which is
exact for the two-dimensional equations but approxi-
mate for the axisymmetric form,

� =
`1

2
n̂1 � ~~A =

`1

2
~X ~� ~X

�1
(68)

where � remains as in Eqn. 24 and,

X =

266664
1 0 0 0

0 n̂y n̂x n̂x

0 �n̂x n̂y n̂y

0 0 a �a

377775 (69)

The absolute value is then de�ned as,

j�j = `1

2
~X j ~�j ~X�1

(70)

Expressions for the sign of the generalized
wavespeeds are developed from,

j�j =M�� (71)

M� = ~X j ~�j ~��1 ~X�1
(72)

which for j~V�j > ~a leads to,

M� = sign(~V�)I (73)

and for j~V�j < ~a,

M� =

266664
sign(~V�) 0 0 0

0 n
y2

1 sign(
~V�) �nx1ny1sign(~V�) nx

1

~a

0 �nx1ny1sign(~V�) nx
2

1 sign(
~V�) n

y
1

~a

0 ~anx1 ~any1 0

377775
(74)

where V� = n̂1 �~V . Similarly, de�ning j�j as,

j�j = �`3
2
~X j ~�j ~X�1

(75)

for j~V� j > ~a leads to,

M� = sign(~V�)I (76)

and for j~V� j < ~a,

M� =

266664
sign(~V�) 0 0 0

0 n
y2

3 sign(
~V�) �nx3ny3sign(~V�) nx

3

~a

0 �nx3ny3sign(~V�) nx
2

3 sign(~V�) n
y
3

~a

0 ~anx3 ~any3 0

377775
(77)

where V� = n̂3 �~V . M� andM� have the property,

M
�1
� =M� M

�1
� =M� (78)

Eigen-value limiting for the suppression of expansion
shocks can be introduced into Eqn. 70. If the limited
eigen-value is expressed as,

j�jlim =j�j+ Æ� (79)

then the additional arti�cial dissipation for eigen-value
limiting in the � direction to be added to Eqn. 66 is,
with Æ+ = 1

2 (Æ�3
+ Æ�4

) and Æ� = 1
2 (Æ�3

� Æ�4
),

� �$a

`1

2
�266664

Æ�1
0 0 0

0 nx
2

1 Æ
+ + n

y2

1 Æ�2
nx1n

y
1(Æ

+ � Æ�2
)

nx
1

a
Æ�

0 nx1n
y
1(Æ

+ � Æ�2
) nx

2

1 Æ�2
+ n

y2

1 Æ
+ n

y
1

a
Æ�

0 anx1Æ
� an

y
1Æ
� Æ+

377775
� g��W (80)

while the eigen-value limiting in the � direction takes
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the form,

+ �$a

`3

2
�266664

Æ�1
0 0 0

0 nx
2

3 Æ
+ + n

y2

3 Æ�2
nx3n

y
3(Æ

+ � Æ�2
)

nx
3

a
Æ�

0 nx3n
y
3(Æ

+ � Æ�2
) nx

2

3 Æ�2
+ n

y2

3 Æ
+ n

y
3

a
Æ�

0 anx3Æ
� an

y
3Æ
� Æ+

377775
� g��W (81)

The 
uctuation is distributed to the nodes using,

S1U1t  1

2
(��

� � �0�) + COE

S2U2t  1

2
(��

�

+ �0
�

) +
1

2
(��

�

+ �0
�

) + COE

S3U3t  1

2
(��

� � �0� ) + COE (82)

where COE stands for contributions from other ele-
ments. The distribution can be expressed in a more
compact form,

(83)

SiUit  
1

4

h
i(3� i)(��� + (�1)i�0�)

+ (�4 + 5i� i2)(��� + (�1)i�0� )
i

+ COE i = 1,2,3

where Eqn. 48 is used to de�ne,

��
�

= ~UW
��
��

; �0
�

= ~UW
��
0�

(84)

��
�

= ~UW
��
��

; �0
�

= ~UW
��
0�

(85)

Viscous Flux

Viscous terms are discretized using a non-upwind

uctuation splitting formulation, which is equivalent
to a �nite element discretization using mass-lumping
to the nodes. Both the �nite volume and the upwind

uctuation splitting inviscid discretizations have been
shown by the authors13 to be compatible with this
viscous treatment for scalar equations.

Integrating the viscous 
ux over a triangular ele-
ment leads to the viscous 
uctuation,

�v =

Z



~r�($a
~Fv) d
 (86)

The nodal distributions are developed in a �nite ele-
ment sense by integrating by parts,

�v
i =

I
�

�i$a
~Fv � n̂ d��

Z



$a
~Fv � ~r�i d
 (87)

For interior nodes the boundary integral in Eqn. 87
will sum to zero and the volume integral is integrated

analytically for a linear variation of the parameter vec-
tor,

~rZ = � 1

2ST

3X
j=1

Zj`jn̂j ~r�i = �`in̂i
2ST

(88)

�i =
`i

2ST

Z



$a
~Fv � n̂i d
 =

�$a`i

2
~~Fv � n̂i (89)

Struijs et al14 have shown that derivatives of primi-
tive variables can be consistently represented in terms
of the parameter vector gradients as,

g~rV = V �Z
~rZ (90)

where,

VZ =

2666664
2Z1 0 0 0

�Z2

Z2

1

1
Z1

0 0

�Z3

Z2

1

0 1
Z1

0


�1


Z4 �
�1



Z2 �
�1



Z3


�1


Z1

3777775 (91)

and,

~V = V(�Z) =

0BBBB@
�Z2
1
�Z2

�Z1

�Z3

�Z1


�1



�
�Z1 �Z4 � 1

2

�
�Z2
2 + �Z2

3

��

1CCCCA (92)

Further, the consistent temperature gradient is,

g~rT =
g~rP
~�R
�

~P
f~r�

~�2R
=

1

R~�2

�
~�
g~rP � ~P

f~r�� (93)

The viscous 
uctuation is then distributed to the
nodes,

SiUit  �vi + COE (94)

An alternate approach to integrating the viscous

ux is obtained by using the divergence theorem,Z


i

~r�($a
~Fv) d
 =

I
�i

$a
~Fv �n̂ d� (95)

where 
i is the generalized control volume containing
node i, with two-dimensional area equal to Si, and �i
is the boundary of 
i.
Haselbacher et al12 have recently presented an ap-

proximate treatment for integrating Eqn. 95 on two-di-
mensional unstructured grids, which they relate to the
thin-layer approximation of the Navier-Stokes equa-
tions presented by Gno�o15 for structured grids. The
method preserves positivity for the Laplacian and is
transparent to grid topology.
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The development begins with the expression,

~Fv �n̂ =
1

Re1

0BBBBBBBB@

0

�
h
~ru�n̂+ 1

3
~r�~V nx � ~rv � t̂

i
�
h
~rv �n̂+ 1

3
~r�~V ny + ~ru� t̂

i
�~rT �n̂+ �

h
1
3 (
~r�~V )(~V �n̂)

+ 1
2
~rV 2 �n̂� u~rv � t̂+ v~ru� t̂

i

1CCCCCCCCA
(96)

where t̂ is a tangent vector with components (�ny; nx).
Haselbacher's approximation neglects all tangential
terms and approximates ~r� ~V ' nx~ru � n̂ + ny~rv � n̂.
Using the notation un = ~ru�n̂, etc., and including the
axisymmetric terms gives the approximation,

~r�~V ' ~Vn �n̂+$
v

y
(97)

leading to,

~Fv �n̂ ' �

Re1

0BB@
0

~V T
n + 1

3 n̂
T
�
~Vn �n̂+$ v

y

�
�
�
Tn + ~V �~Vn + 1

3
~V �n̂

�
~Vn �n̂+$ v

y

�
1CCA

(98)

A further simpli�cation aligns n̂ with the nearest
mesh edge for faces of � on the interior of the domain,
so that terms such as un reduce simply to the di�erence
in nodal values divided by edge length. Also, $a is
chosen to be the midpoint of the edge.
Including one more approximation, namely replac-

ing the length � of the median-dual face with the
length of the associated containment-dual face, has
the e�ect of canceling some of the errors for very
high-aspect-ratio cells introduced by assuming n̂ is
edge-aligned. For low-aspect-ratio cells, the contain-
ment dual is the same as the median dual and the true
n̂ is closely aligned with the mesh edge. This imple-
mentation is similar to the suggestions of both Barth6

and Haselbacher,16 yet retains the global median-dual
implementation required by a distribution scheme.

Boundary Conditions

Boundary nodes may be updated either strongly,
where the nodal solution values are simply assigned
a priori, or weakly, where the solution values at the
boundary nodes are relaxed in time using the same
formulations as for interior nodes.
For �nite volume, the weak boundary implemen-

tation speci�es the solution state to the outside of
boundary faces, then allows the approximate Riemann
solver to construct the appropriate 
uxes through the
boundary faces. See Figure 3 for an illustration of the
weak �nite volume boundary condition. The solution
state to the inside of the boundary face can be set from
either a �rst- or second-order reconstruction from the

0
Interior

Exterior

=Boundary state, = Reconstructed state

Dual mesh

Fig. 3 Weak implementation of �nite volume
boundary condition for node 0, imposed by spec-
ifying external state. Quadrature points denoted
by X's.

0 1
Interior

Exterior

n̂01

f0 f1

~Abc0 ~Abc1

f00 k ~Abc0

f11 k ~Abc1

f0; f1 are �ctitious
nodes for sending
boundary 
uctua-
tions to nodes 0
resp 1.

Fig. 4 Weak implementation of 
uctuation split-
ting boundary condition, imposed by specifying
external state at ghost nodes f0; f1.

node. For some cases, second-order reconstruction to
boundary faces has led to localized oscillations in the
solution convergence at boundary nodes.
Weak formulation of the 
uctuation splitting bound-

ary condition is developed using �ctitious \ghost"
nodes, one for each boundary node, as shown in Fig-
ure 4. Considering the scalar case, the positioning of
a ghost node such that the edge connecting the ghost
and boundary nodes is parallel to the advection veloc-
ity results in a boundary 
uctuation of,

�bc0 =
1

2
`01 ~A�n̂01(Uf0 � U0) (99)

for node 0 of Figure 4. Observe that this formulation is
independent of the physical location of the ghost node,
so the ghost node can be chosen to be in�nitesimally
close to the boundary node it supports. The solution
state at the ghost node remains to be speci�ed, and
can be varied node-to-node. The associated arti�cial
dissipation is,

�0bc0 = sign( ~A�n̂01)�bc0 (100)

and the resulting distribution is,

S0U0t  
1

2
(�bc0 + �0bc0) + COE (101)

Since no account of the ghost cell area is made in form-
ing the dual area on the LHS of Eqn. 101, a scale factor
on [ 12 ; 1] can be applied to the distribution.

8 of 17

American Institute of Aeronautics and Astronautics Paper 2001{2630



The extension to systems follows by analogy. The
boundary 
uctuation is de�ned,

��bc0 =
$a0

2
`01 ~Abc0 �n̂01(Wf0 �W0) (102)

with the arti�cial dissipation,

��
0

bc0
= sign(~Abc0 �n̂01)��bc0 (103)

Additional dissipation for the suppression of expan-
sion shocks is added to Eqn. 103 following the form of
Eqns. 80 and 81 as,

+$a0

`01

2

266664
0 0 0 0

0 nx
2

01Æ
+ nx01n

y
01Æ

+ nx
01

a
Æ�

0 nx01n
y
01Æ

+ ny
2

01Æ
+ n

y
01

a
Æ�

0 anx01Æ
� an

y
01Æ

� Æ+

377775
� (Wf0 �W0) (104)

The distribution to the boundary node is then formed
as,

S0U0t  
1

2
UW (��bc0 +

��
0

bc0
) + COE (105)

This system treatment is only approximate, as the
cross-
uctuation does not vanish when ~V k f00, as in
the scalar case, but reduces to the term,266664

0 0 0 0

0 0 0 nxf0

0 0 0 n
y

f0

0 a2nxf0 a2n
y

f0
0

377775 (106)

Strictly, there should be some cross-coupling with the
neighboring boundary nodes. However including the
term from Eqn. 106 requires explicitly locating the
ghost nodes, which can be impossible for certain ge-
ometries.
The distribution to node 1 is formed analogously,

substituting 0 for 1 in Eqns. 99{106.
The freestream boundary condition is enacted by

specifying a complete, constant thermodynamic state
and velocity vector. By using the weak boundary en-
forcement, this one boundary condition covers the four
permutations of subsonic or supersonic, in
ow or out-

ow.
The inviscid wall boundary is implemented by mir-

roring the primitive variables, either across the face for
�nite volume or at the node for 
uctuation splitting.
The axisymmetric axis is enforced by imposing zero


ux on the axis and using the control-volume centroid
for $a in Eqn. 8.
Viscous walls de�ne a stagnant velocity and a spec-

i�ed wall temperature. The zero velocity at the wall
causes the viscous axisymmetric source to be zero.

Both the full viscous 
ux and the approximate thin-
layer 
ux of Haselbacher reduce to,

~Fv �n̂ =
1

Re1

h
0; �~Vn; �Tn

i
(107)

at a wall, since ~V , ~r�~V , and ~Vn �n̂ go to zero. De�ning
the heat transfer into the wall according to Fourier's
law,

qw = � �

Re1

Tn (108)

and the wall shear stress,

~�w = � �

Re1

~Vn (109)

allows the Eqn. 107 to be written as,

~Fv �n̂ = � [0; ~�w; qw] (110)

where the minus sign results from the choice of an
outward unit normal, n̂, to the control volume, which
points into the wall at a boundary.
The solid wall is enforced weakly, by specifying the

wall shear that will drive the 
ow momentum to zero
and the heat 
ux that will drive the solution temper-
ature to the desired wall temperature. An advantage
of this weak approach is that wall heat transfer and
skin friction are solved for directly, rather than as a
post-processed least-squares reconstruction. Using an
explicit update, the wall heat 
ux can be isolated as,

qw =
1

$a

P
�w

�
$aS

�t
(U4 � U1 e(Tw)) +RHSi+v4

�
(111)

Similarly, the wall shear is,

~�w =
1

$a

P
�w

�
$aS

�t
(U2; U3) +RHSi+v2;3

�
(112)

Temporal Evolution

Solutions at the nodes are updated using an explicit
forward-Euler LHS. A Jacobi relaxation strategy is
followed with either local time stepping or �rst-order
global time steps.
The CFL (Courant et al17) criteria for explicit

schemes is adapted for use with the node-based un-
structured scheme. The inviscid timestep is de�ned
by the most restrictive time for signal propagation, at
the eigen-value speeds, between adjacent nodes,

�t0 =min

 
k~r0ik

j~V0 �r̂0ij+ a0

!
=min

 
~r0i �~r0i

j~V0 �~r0ij+ a0 k~r0ik

!
(113)

where the current node is node 0 and i takes on nodal
values for each distance-one neighbor of the current
node.
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Fig. 5 Sample randomly distorted mesh used for
solver veri�cation cases.

The viscous timestep restriction is taken to be an
approximation based upon the positivity analysis for
the scalar case,13 assuming order-1 Prandtl number,

�t0 =
4S0�0Re1R

�0(R+ 
 � 1)
P

T

`2
0

ST

(114)

The stability and convergence of axisymmetric solu-
tions is found to be enhanced by scaling the timestep
for points near the cylindrical axis by the maximum
of either the node height or the square root of the
median-dual area.
The more restrictive of the inviscid or viscous

timestep is used to scale the nodal update.

Results

Veri�cation of the complete solver is performed in
stages using a methodology derivative of Singhal.1 A
variety of canonical cases are constructed, including
grid distortions, that are designed to exercise com-
binations of the various functions that comprise the
complete solver. Two viscous cases serve to validate
the solver against benchmark data.

Inviscid Veri�cation

Distorted mesh

The �rst veri�cation case simply passes a uniform

ow through a distorted grid, with success being the
preservation of uniformity to at least six signi�cant
digits. The domain is initialized to stagnant condi-
tions with freestream 
ow impulsively applied at the
boundaries. A variety of 
ow angles were tested on
�180Æ � AOA � 180Æ for subsonic, transonic, and
supersonic Mach numbers. Regular, high aspect ratio
(100), skewed (2Æ < � < 175Æ), and randomly dis-
torted (Figure 5) meshes with 121 nodes were used.
Initial runs were instrumental in re�ning the treat-
ment of eigen-value limiting for 
uctuation splitting.

20Æ
24Æ

34Æ

State A
Mach = 2.3
AOA = -10Æ

State B
Mach = 1.8
AOA = 10Æ

State C
Mach = 1.91
AOA = 0Æ

State D
Mach = 1.45
AOA = 0Æ

Fig. 6 Description of converging-Mach-stream
problem. Flow from left to right, with oblique
shocks, solid, and slip-line, dashed, emanating from
trailing edge of splitter plate.

All �nal runs were successful for both �nite volume
and 
uctuation splitting.

Converging Mach streams

Thermodynamic routines are veri�ed by considering
converging Mach streams, inclined at �10Æ. The up-
per stream is at Mach 2.3 while the lower stream has
Mach 1.8. The two streams have matched densities
but a temperature ratio of 1.0812, resulting in a hori-
zontal slip line behind the oblique shocks. A complete
description of the analytic solution appears in Figure 6
and Table 1.

A sequence of four meshes, with a re�nement ratio
of 1.5, is considered. The meshes are triangulated from
16� 16, 24� 24, 36� 36, and 54� 54 grids. The tri-
angulated 16� 16 grid is shown in Figure 7. The �ner
meshes cover the same domain and are constructed
similarly to the shown mesh.

A Mach-number contour plot for 
uctuation split-
ting on the �nest mesh is shown in Figure 8, showing
crisp discontinuity resolution and the correct post-
shock Mach numbers. The shock angles for all eight
cases, i.e. �nite volume and 
uctuation splitting on
each mesh, are measured to be correct within �1Æ.
The L2-norms of the primitive-variables error at states
C and D are plotted versus the characteristic mesh
size in Figure 9. The slopes of the regression lines
are indicative of the order of accuracy with respect to
grid convergence of the two schemes for this test case.

Table 1 Analytic thermodynamic states for con-
verging Mach streams.

State �, kg/m3 T , K P , kPa V , m/s

A 1.2 300 103.34 798.6

B 1.2 324.7 111.73 649.9

C 1.813 356.7 185.62 723.7

D 1.718 376.4 185.62 563.7
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Fig. 7 16� 16 mesh for converging Mach streams.
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M = 2:3

M = 1:8

M = 1:91

M = 1:45

Fig. 8 Mach contours from 
uctuation splitting
on �nest mesh.

1 1.5 2
-4

-3

-2

-1 2:1 slope

3:1 slope

log10
p
nodes

log10 kErrork

Fig. 9 Grid convergence rates for converging
Mach stream case. Circles = 
uctuation splitting,
squares = �nite volume.

Finite volume exhibits second-order convergence, as
expected. Unexpectedly, 
uctuation splitting shows
super-convergence for this particular case. True mul-
ti-dimensional upwinding is likely the source of the ex-
ceptional 
uctuation splitting accuracy for this purely-
supersonic 
ow. Supplementing the graphical deter-
mination of the grid-convergence rates, the equations
presented by Roache,2 based on a Richardson extrap-
olation, yield average grid-convergence rates of 3.0 for

100 101 102 103 10410-7

10-6

10-5

10-4

10-3

10-2

10-1

100

L2 (residual)

CPU seconds

Fig. 10 Convergence histories for converging
Mach-stream case. Fluctuation splitting solid, �-
nite volume dashed. Coarsest mesh on left, �nest
on right.

0 0.5 1
0

0.5

1

X

Y

Fig. 11 Grid for diamond airfoil veri�cation test.


uctuation splitting and 2.1 for �nite volume.

Temporal convergence rates are plotted in Figure 10,
with timings performed on an IRIS R10000 platform.
All cases were run using the Minmod limiter and a
Jacobi update strategy with local time steps. Fluc-
tuation splitting was run with a unity CFL number,
while best convergence for �nite volume was found for
CFL=0.7. Fluctuation splitting runs at 145 �s per
node per iteration, while �nite volume runs at 165 �s
per node per iteration.

Diamond airfoil

A veri�cation of the inviscid wall boundary condi-
tion is performed on a diamond airfoil at zero angle
of attack and Mach 1.5. The 
ow de
ection is �ve de-
grees. The grid is shown in Figure 11. A Mach-number
contour plot using 
uctuation splitting is shown in Fig-
ure 12. The corresponding �nite volume solution, not
shown, is visually indistinguishable from the 
uctua-
tion splitting solution. The analytic drag coeÆcient,
based on chord length, is 0.02760. The 
uctuation
splitting drag coeÆcient is 0.02638, for a 4.4 percent
error. The �nite volume result has an error of 6.6 per-
cent from a drag coeÆcient of 0.02579.
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Contours vary on
1.35{1.65 with
0.05 increment.

Fig. 12 Mach contours on diamond airfoil, M = 1:5,

uctuation splitting solution.
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Fig. 13 Two-dimensional 10 percent circular-
bump mesh with isobars from 
uctuation splitting
solution at Mach 0.1.

Circular bump

A subsonic two-dimensional veri�cation is per-
formed on a 10 percent circular bump at Mach 0.1.
The 1389-node mesh with isobars from the 
uctuation
splitting solution is shown in Figure 13. A true incom-
pressible inviscid 
ow would have symmetric isobars
fore and aft, and zero drag. The 
uctuation splitting
drag coeÆcient, based on cord length is 0.0058. Finite
volume predicts a drag coeÆcient more than twice as
large, 0.0128. A lower 
uctuation splitting drag coeÆ-
cient is indicative of lower levels of arti�cial dissipation
in the solution for this case.

Sphere

In a similar vein, Mach 0.1 axisymmetric 
ow over a
sphere is tested on a 1369-node mesh. The drag coef-
�cient, based on frontal area, is 0.43 for �nite volume
but 0.56 for 
uctuation splitting. Contrary to expec-
tation, the increased arti�cial dissipation in the �nite
volume solution creates enough of a total pressure loss
to nearly eliminate separation on the leeside, whereas
the leeside increase in pressure toward the centerline
in the 
uctuation splitting solution does produce a siz-
able separation region, and in this case a larger drag
coeÆcient. As with subsonic bump case, true incom-
pressible, inviscid 
ow should theoretically produce
zero drag.

Cone

The �nal inviscid veri�cation is for an 11-degree
semi-vertex-angle cone at Mach 1.5. The well-
established Taylor-Maccoll18 method for the conical
supersonic Euler equations predicts a drag coeÆcient,
based on base area with no base pressure, of 0.7795.
The 
uctuation splitting solution, which converged
seven orders of magnitude in 38 seconds, predicts a
drag coeÆcient of 0.7785, for only a 0.13 percent er-
ror. The �nite volume solution, which took 13 percent
longer at 43 seconds to reach seven orders of magnitude
residual convergence, predicts a 0.7754 coeÆcient, for
an error of 0.53 percent.

Viscous Validation

Two canonical viscous validation cases are consid-
ered: a subsonic 
at plate and a hypersonic cylinder.
Steady laminar solutions are obtained using the Hasel-
bacher thin-layer viscous treatment with containment-
dual modi�cation.

Flat plate

The classic Blasius19 
at-plate boundary layer prob-
lem is solved on a rectangular domain. Mach 0.3

ow enters 2 units upstream of the plate leading edge,
which is located at the origin. The plate is 4 units
long, ending at an extrapolation out
ow boundary.
The upper boundary is 1.2 units above the plate. The
Reynolds number is 104.
The meshes are obtained from a structured grid con-

taining 37 equally-spaced points parallel to the plate,
12 points upstream of the plate and 25 points on the
plate, and 41 points normal to the plate. The ver-
tical grid spacing at the wall is 0.001 units with an
exponential stretching as described in Ref. 20, plac-
ing approximately 20 nodes within the boundary layer.
The unstructured mesh is formed from the structured
grid using diagonal cuts in an alternating pattern.
Two coarser meshes are similarly constructed by suc-
cessively deleting every-other node in the wall-normal
direction, leaving 10 and 5 nodes, respectively, in the
boundary layer for the medium and coarse grids.
Boundary layer pro�les of u are extracted at x =

1; 2; 3 from both the 
uctuation splitting and �nite
volume solutions and plotted versus the Blasius solu-
tion in Figure 14. The boundary layer scaling variable
is de�ned as,

� = y

r
Re

x
(115)

Both solution sets match the Blasius pro�le, indicating
well-developed 
ow with adequate grid resolution on
the �nest mesh.
Figure 15 shows the e�ect of using the containment-

dual approximation in the Haselbacher thin-layer vis-
cous treatment. Boundary layer pro�les of u are again
extracted at x = 1; 2; 3, with both solutions being run
with 
uctuation splitting. Figure 15(a) is the same
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a) Fluctuation splitting.
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b) Finite volume.

Fig. 14 Boundary layer pro�les of tangential velocity extracted from three stations on 
at plate.
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a) Containment dual approximation.
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b) Strict median dual implementation.

Fig. 15 Boundary layer pro�les computed using two di�erent viscous dual mesh de�nitions.
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Fig. 16 Boundary layer pro�les of vertical velocity
extracted from midpoint of 
at plate.

as Figure 14(a), while Figure 15(b) uses the strict
median-dual de�nition for the viscous terms. For the
highly-stretched grid elements used in this case, it is
clear that the containment-dual approximation pro-
vides improved boundary-layer resolution, while omit-
ting the approximation leads to a pro�le that is \too
full."

The v-velocity pro�les from the 
uctuation splitting
and �nite volume solutions are compared in Figure 16,
both extracted from the plate at x = 2. The 
uctua-
tion splitting solution comes much closer to matching
the Blasius pro�le than the �nite volume result. Ex-
cessive arti�cial dissipation is produced by the �nite
volume scheme in the y-momentum equation, which
suppresses the v-velocity below the analytic value. The
arti�cial dissipation contributions to the y-momentum
equation are plotted for both 
uctuation splitting and
�nite volume in Figure 17. The vertical scale has been
enlarged by a factor of 30 to zoom in on the boundary
layer in Figure 17. Clearly, �nite volume is producing
signi�cantly more arti�cial dissipation than 
uctua-
tion splitting over the length of the boundary layer.

For this essentially incompressible case, the suppres-
sion of the vertical velocity due to excessive arti�cial
dissipation is manifested by an increase in skin friction
coeÆcient, as shown in Figure 18, where the friction
coeÆcient increases with running length for �nite vol-
ume, but not for 
uctuation splitting. Recall that
�nite volume is continuously producing arti�cial dissi-
pation over the length of the plate while the 
uctuation
splitting dissipation is restricted to the leading-edge
region only. Figure 18 presents data from all three
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a) Fluctuation splitting.
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b) Finite volume.

Fig. 17 Arti�cial dissipation production in the
y-momentum equation. Eleven contours spaced
equally on 0{0.0005.

grid re�nement levels. The �nite volume results de-
grade dramatically with coarsening of the mesh, but
the 
uctuation splitting results remain relatively in-
variant with mesh resolution, all the way down to only
�ve nodes in the boundary layer.

The medium-mesh �nite volume solution was re-
peated using the full Navier-Stokes treatment, rather
than the thin-layer equations. No change in the skin-
friction results are seen over the �rst half of the plate,
Figure 19, though there is an 8-percent improvement
toward the end of the plate. Solving for the full Navier-
Stokes terms requires 11 percent more CPU time per
iteration.

Cylinder

The opposite end of the Mach-number spectrum
is used to validate heat-transfer calculations, in this
case for a cylinder of 1 m radius in Mach 17.6 
ow.
The perfect-gas assumption is a poor physical model
for these extreme conditions, V1 = 5 km/s, �1 =
0:001 kg/m3, T1 = 200 K, Twall = 500 K, but the

14 of 17

American Institute of Aeronautics and Astronautics Paper 2001{2630



0 1 2 3 4

0

0.25

0.5

0.75

1

1.25

1.5

X

Cf

p
Rex

Blasius
Fine mesh
Medium mesh
Coarse mesh

a) Fluctuation splitting.

0 1 2 3 4

0

0.25

0.5

0.75

1

1.25

1.5

X

Cf

p
Rex

Blasius
Fine mesh
Medium mesh
Coarse mesh

b) Finite volume.

Fig. 18 Skin friction coeÆcients for Blasius 
ow.
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Fig. 19 E�ect of viscous modeling on skin friction.

case provides a severe test of the algorithms under a
re-entry scenario. Results are compared against the
LAURA15, 21, 22 benchmarks.� The LAURA code is
well-established as a structured-grid hypersonic solver.
Also included in the LAURA benchmark data is a solu-
tion using the unstructured-mesh �nite volume solver
FUN2D.23 The unstructured grid for this case was
obtained by simple triangulation of the LAURA grid,
which has 65 nodes perpendicular to the surface, clus-

�http://hefss.larc.nasa.gov

tered to the wall, and circumferential nodes spaced
every 3 degrees. Only the forward-half of the cylinder
is solved, as shown in the mesh and 
ow�eld solution
of Figure 20.
The surface pressure coeÆcient is plotted versus ro-

tation angle from the stagnation point for both the

uctuation splitting and �nite volume solutions, along
with the LAURA and FUN2D results in Figure 21.
The LAURA, FUN2D, and 
uctuation splitting curves
all over-plot, and the �nite volume solution nearly
over-plots, being 1 percent low at the stagnation point
and slightly high by a similar amount 90 degrees away.
The calculations were repeated on a grid coarsened by
a factor of four (skip of two in both structured-grid
directions), with surface pressure results plotted in
Figure 22 along with the �ne-mesh LAURA solution.
The coarsened 
uctuation splitting surface pressures
retain good agreement, and the �nite volume solution
matches over most of the cylinder, with minor excep-
tions again at the stagnation point, 1 percent high on
this grid, and at the 90 degree point.
Surface heat-transfer rates for LAURA, FUN2D,

and 
uctuation splitting are shown in Figure 23. Both
of the unstructured-mesh solutions show elevated heat-
ing at the stagnation region, with 
uctuation splitting
being 30 percent higher than LAURA while FUN2D
is 50 percent higher. Heating results for this case were
also obtained using a validated structured-mesh cou-
pled inviscid/boundary-layer code, with the solution
agreeing with the LAURA data.
The �ne-mesh solutions were repeated using the full

Navier-Stokes treatment, and no changes in heating
levels were observed.

Concluding Remarks

A multi-dimensional upwind 
uctuation splitting
scheme has been formulated for two-dimension-
al/axisymmetric viscous 
ows. A weak form of the
boundary conditions was proposed and the proper in-
corporation of eigen-value limiting derived.
While the scheme is formally second-order accu-

rate, super-convergent third-order behavior was seen
for a canonical veri�cation test of converging super-
sonic streams.
The 
uctuation splitting scheme produced more ac-

curate solutions for the inviscid diamond airfoil and
circular bump than a �nite volume scheme. Para-
doxically, the excessive arti�cial dissipation produced
by the �nite volume scheme actually led to a lower
drag than 
uctuation splitting for the subsonic invis-
cid sphere case.
For the viscous 
at plate, 
uctuation splitting was

seen to produce more accurate solutions than �nite
volume, due to the 
uctuation splitting low levels of ar-
ti�cial dissipation. Also, 
uctuation splitting showed
excellent skin-friction predictions on extremely coarse
meshes, while the �nite volume results deteriorated
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Fig. 20 Hypersonic cylinder domain with 
uctua-
tion splitting solution.

0 30 60 90

0.0

0.4

0.8

1.2

1.6

2.0

Cp

Rotation degrees from stagnation point

Fig. 21 Cylinder surface pressures, solid = 
uctu-
ation splitting, LAURA, and FUN2D, while dashed
= �nite volume.
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Fig. 22 Cylinder surface pressures on coarsened
mesh, solid = LAURA, dashed = 
uctuation split-
ting, and dotted = �nite volume.
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Fig. 23 Cylinder surface heat-transfer rates,
solid = LAURA, dashed = FUN2D, and dotted
= 
uctuation splitting.
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with mesh coarsening.
Surface pressures were well predicted for the hyper-

sonic viscous cylinder, but surface heating was dis-
appointingly high for all the unstructured schemes
considered here relative to the benchmark solution.
Further testing is warranted to probe the validity
of unstructured meshes for hypersonic viscous so-
lutions. Mixed-element strategies may be a more-
appropriate course for high-Mach-number applica-
tions, with the 
uctuation splitting inviscid distribu-
tion assigned from an implicit triangulation in the
boundary layer.
Therefore, the upwind 
uctuation splitting invis-

cid discretization is an attractive solver from subsonic
through hypersonic regimes vis a vis �nite volume for a
fresh code build, but the bene�ts are perhaps not great
enough to justify rebuilding a legacy code. However,
when coupled with a viscous discretization the reduced
levels of arti�cial dissipation in 
uctuation splitting
allow for coarser viscous meshes, which can lead to
signi�cantly reduced computational requirements.
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